“If you wish to make an apple pie from scratch,
you must first invent the universe.”

— Carl Sagan, Cosmos: Part 9: The Lives of the Stars

melodysheep. Carl Sagan – ‘A Glorious Dawn’ ft Stephen Hawking. Symphony of Science.





To understand the self as a multi-level system of physical, emotional, mental, and spiritual emergence, it’s important to ask: how are we defining emergence? Emergent complexity has become a popular topic in mainstream culture, which can be problematic because it means different things to different people. While there is no all-purpose definition of emergence, this project is based on a specific framework for understanding what it is and how it works.



In the most general terms, emergent complexity — or emergence — refers to the way that relatively simple interactions can have disproportionately complex results. It involves a kind of grassroots, bottom-up organization that helps to explain why we find so much order in a universe that lacks executive, top-down direction.


three vertically aligned images from top to bottom: fitted puzzle pieces and one separate piece, flock and one outlier bird, netwon's cradle with one swinging ball
In the context of an emergent systems framework, emergence is a process by which dynamic parts (patterns of interactions at a relatively simple level) cause/effect dynamic wholes (patterns of interactions at a relatively complex level). This definition is based on three key themes: 1.) part-whole relationships as 2.) patterns of interaction and 3.) levels of cause and effect.




If you’re familiar with the concept of emergence, you’ve probably heard it associated with the idea of the whole being greater than the sum of its parts. This idea isn’t completely wrong, it’s just not entirely accurate.



When we think of part-whole relationships like a kind of jigsaw puzzle, the parts are pieces that can be assembled into the whole. The whole is “greater” because it serves a function that is quantitatively more than the sum of its parts.



However, emergence involves a special kind of puzzle. Instead of the parts simply fitting together to form the whole, the parts exist on a micro level and cause the existence of the whole on a macro level (Here, micro and macro refer to a hierarchical scale of complexity). An emergent whole is “greater” because it exists at a level beyond and is qualitatively different from the sum of its parts.



A special kind of puzzle (whole) requires special puzzle pieces (parts). We frequently use the noun, “part,” to refer to a wide range of part-whole relationships. A slice is part of a pie. The filling can be part of a pie as well. Even its ingredients could be considered part of a pie. Arguably, the best part of a pie is how it tastes.



But in emergent phenomena, parts and the wholes they give rise to aren’t just things – they’re interactions. Beyond the proportional or organizational or compositional or descriptive parts of a pie, the atomic interactions that give rise to it are also parts of the pie. The pie exists in the way that it does because in any given moment its atoms are interacting in the way that they do.




Of course, most of the stuff in our day to day lives is made of atoms, too. And atoms are also wholes emerging from subatomic interactions. Which is another way of saying that — from grains of sand to galaxies of stars — all the physical forms we can see, hear, smell, taste, or touch (and many that we can’t) are emergent phenomena.



Given the fundamentally interactive nature of reality, it’s good to remember that even the things that seem simple are nonetheless complex. However much of this interaction can be described by the laws of physics. These laws help us organize our understanding of complexity in the physical world.


Fortunately, we don’t have to get into the scientific details of physical interactions to get a general sense of emergent systems. But we do need a way of conceptualizing the complexity of emergence. To do this, we can refer to three primary types of interactions among parts: how parts interact individually, in relationship to one another, and in the context of the collective parts.



Individual, relational, and collective interactions can organize into patterns which give rise to a self-organizing whole. The whole is then a representation or ‘overview’ that integrates all of the dynamic patterns of interaction from which it emerges.




line of fallen domino
In emergence, the part-whole relationship is fundamentally one of cause and effect. Parts are the causes and wholes are their effects. The idea of levels can help us understand how this emergent cause and effect relationship works.



This slideshow requires JavaScript.

Most examples of cause and effect are described in terms of linear or sequentially ordered steps of time. In these examples, cause and effect happen one after the other. To say that A causes B implies that A happened first and then B happened next. The first car suddenly slows down, and the effect is that the second car crashes into the first. It’s a relatively simple and literally straightforward perspective of cause and effect.



This slideshow requires JavaScript.

Instead of a strictly linear view of causality, emergence involves a kind of cause and effect that happens synchronously but at different levels. Although we may only perceive the resulting changes over time, the causes and their effects aren’t related through time, they’re related through interaction. What happens at the level of the parts (A) simultaneously causes something to come into being on the level of the whole (B). As hundreds of individual cars slow down, they synergistically cause a traffic jam.



(Linear / sequential cause and effect is like listening to the sound of an individual instrument. We hear the music as one note after another. Multi-scale / synchronous cause and effect is like listening to the simultaneous sounds of multiple instruments. There’s the linear progression of time, but the music we hear emerges all at once from the interactions of notes. Even though the music would not exist without the individual sounds, it also exhibits qualities or characteristics or a life of its own at a level that transcends them.)



With both the traffic and music examples, it’s important to remember that the basis of emergence is interaction. In the traffic example, the part and whole relationship isn’t cars and traffic, it’s cars-slowing-down and traffic. Similarly, in the music example, the parts aren’t the instruments, they’re the instruments-making-sounds. Even going back to our pie example, how the ingredients make a pie is not an example of emergence, but the behavior of atoms (from the ingredients) manifesting as a pie is.





Interactions, patterns, and levels help us reframe the nature of part-whole relationships. In doing so, we can come to a new understanding of what it means for the whole to be greater than the sum of its parts.



All of which serves to inform a working definition of emergence as the cause and effect dynamic by which patterns of interaction at a generative (causal) level synchronously give rise to patterns of interaction at an emergent (effected) level. With this definition, we can construct a framework for emergent systems. In trying to visual the framework, it can be helpful — although somewhat misleading — to imagine patterns and levels as horizontal and vertical dimensions of interaction, respectively.



Now that we have a rudimentary map for navigating the nature of emergence, we can more deeply explore what it means to imagine the self as an emergent system.




This content is being created and curated as part of a project exploring how changing the ways we think about thinking can revolutionize the ways we change the world. See the Emergent Cognition Project overview to learn more.